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Affine Varieties and Dimension.

Let R = k[x1, . . . , xn] be the ring of polynomials over an algebraically closed field k. For any
ideal I of R, the set V(I) of zeroes of all f ∈ I is called the affine variety of I. Since I is finitely
generated V(I) is the set of solutions of a finite system of polynomial equations f1 = · · · = fm = 0.
It is useful to think of it also as the set Algk(R/I, k) of k-algebra homomorphisms R/I → k.

Given an affine variety V = V(I), consider the ideal I(V ) = {f ∈ R| f(x) = 0 ∀x ∈ V }.
Hilbert’s Nullstellensatz says that I(V(I)) = rad I; in other words I is almost retrievable from
V(I). Since obviously V(I) = V(rad I), we see that two ideals give rise to the same variety iff they
have the same radical. In particular, if I is P -primary, we have rad I = P , V(I) = V(P ), and
I(V(I)) = P .

Obviously I1 ⊂ I2 implies V(I1) ⊃ V(I2), and it is easy to see that V(I1 ∩ I2) = V(I1)∪ V(I2).
Hence a primary decomposition I = Q1 ∩ · · · ∩Qr results in a break-up V(I) = V(Q1)∪ · · · ∪V(Qr)
with unique components V(Qi) = V(Pi). A variety V is irreducible, i.e. not the union of proper
subvarieties, iff I(V ) is prime, or equivalently V = V(Q) with Q primary.

Let V = V(P0) with P0 prime. Irreducible subvarieties of V correspond to primes of R
containing P0, or equivalently, prime ideals of the domain A = R/P0. As in vector spaces, one can
define the dimension of V to be the length s of the longest possible chain V = V0 ⊃ V1 ⊃ · · · ⊃ Vs
of irreducible subvarieties. This corresponds to a chain 0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Ps of prime ideals in
A, which is why we also write s = dimA.

On the other hand, dimension should have something to do with degrees of freedom. There are
two variants of this notion, a global one and a local one. Globally we can take the transcendence
degree over k of the quotient field of A. By Noether’s Normalization Lemma, A is integral over a
subring B = k[t1, . . . , ts] with independent parameters ti. To get a point of V , i.e. a homomorphism
A → k, we can freely assign values to the ti (whence s degrees of freedom) and then have finitely
many choices for the xj by the theorem of Cohen-Seidenberg. By a refinement of that theorem,
chains of primes in A correspond to chains of primes in B, and vice versa, so that dimA = dimB.
Now it is easy to see that the latter is exactly s. For instance, if B = k[x, y, z], the chain of ideals
0 ⊂ (x) ⊂ (x, y) ⊂ (x, y, z) is maximal.

The third notion of dimension has to do with the number of local parameters at a point. It
is analogous to the dimension of the tangent space in differential geometry. A point of V is a
0-dimensional subvariety belonging to a maximal ideal M of A. Intuitively, we want something
like the minimal number of generators of M . However, the point in question is equally well given
by any M -primary ideal Q, which, being smaller than M , may need fewer generators. So, we
define the local dimension δM (A) to be the smallest number of elements required to generate any
M -primary ideal. To compare δM (A) with dimA, we can work in the local ring AM which has the
same quotient field as A and hence the same dimension. Ameneties like Nakayamas Lemma make
local rings relatively pleasant to work with. Given a minimal set of generators for an M - primary
ideal it is not very difficult to construct a chain of primes of the same length (along the line of the
x, y, z-story above). Thus one can show dimAM ≥ δ(AM ).

The reverse inequality is more interesting. The trick is to introduce yet another dimension
d(A), which is the degree of a polynomial associated with the graded ring

∑
ν≥0Q

ν/Qν+1 for any
M -primary Q, and which has the virtue of being ≤ δ(A) from the start. Using the Artin-Rees
Theorem, it is then shown that d(A) decreases strictly when A changes to A/(f). From there a
straightforward induction proves that d(A) ≥ dimA.
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Freedom and Finiteness.

Let R be a (commutative) domain. We shall mainly be interested in finitely generated (here-
inafter called ‘fig’) R-modules. Any choice of generators of a fig module M produces a surjection
F → M → 0 from a free module F onto M . If the kernel of this is also fig free, M is said to be
finitely presented. This is is true for any M , as long as R is principal. When R is noetherian ( i.e.
every ideal is fig), every submodule of a fig module is fig, so that M has a free resolution

· · · → Fn → · · · → F1 → F0 →M → 0.

If such a resolution breaks off after finitely many terms, we say that M is finitely resolvable. If this
happens for every fig M , let us call R strongly noetherian. If R is (strongly) noetherian, so is the
polynomial ring R[X] — courtesy of Messrs. Hilbert and Serre, respectively. In particular, any
polynomial ring over a field is strongly noetherian.

A module M is projective, if every surjection from a free module F → M → 0 has a right
inverse. For fig modules this happens iff the localization MS is a free RS-module, whenever we
admit the complement S of a maximal ideal of R as a set of denominators. In this sense, a fig
projective module is locally free. In view of the technical usefulness and ubiquity of localization, it
is clear that projectivity is a convenient property this side of freedom. A little better than projective
are the stably free modules. A module M qualifies for this distinction, if M ⊕ F is free for suitable
fig free F . It is not hard to show that M is stably free iff it is projective and finitely resolvable.

To prove that some ring R does not have any non-free, stably free modules, an easy induction
shows that it suffices to verify: for any module M , the freedom of M ⊕R implies that of M . This,
in turn, amounts to the following statement about matrices: every left- invertible n×1-matrix over
R occurs as a column in an invertible square matrix. A theorem by Quillen and Suslin says that
this is true for R = k[x1, . . . , xr], thus corroborating a conjecture of Serre’s to the effect that, for
such R, every projective fig module is free.

If R is the coordinate ring of an affine variety V =Algk(R, k), a projective R-module (being
locally free) gives rise to an algebraic vector bundle over V (and vice versa). The Quillen-Suslin
Theorem asserts that, if V is affine r-space, every such bundle is algebraically isomorphic to a trivial
one. Even for k = C this is a lot more than the obvious topological result.

R is called a dedekind domain if every ideal is projective (forcing every fig torsion-free R-
module to be so). The projectivity of an ideal I 6= 0 is equivalent to invertibility: the existence of
generators {ai} of I and elements {bj} of the field of quotients of R such that

∑
i aibi = 1 and all

aibj ∈ R. This property entails that the non-zero ideals in a dedekind domain R are automatically
fig and that they form a semi-group with cancellation, i.e. I0I1 = I0I2 ⇒ I1 = I2. Together with
the primary decomposition available in any noetherian ring, this leads to unique factorization of
ideals into products of prime powers. Since all prime localizations of R are principal (ideals become
free!), a dedekind domain is noetherian, integrally closed, and one-dimensional. Conversely, these
three conditions are equivalent to the dedekind property, thus ensuring that it is transmitted to
the integral closure of R in any finite separable extension of its field of quotients.
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Bits and Pieces.

To begin with, let R be any ring, M any R-module. The finite filtrations M = M0 ⊃ M1 ⊃
· · · ⊃Mn = 0 and M = M ′0 ⊃M ′1 ⊃ · · · ⊃M ′n = 0 are said to be isomorphic, if their bits Mi/Mi+1

and M ′j/M
′
j+1 nre pairwise isomorphic after suitable reordering of indices. A theorem of Schreier,

having to do with Butterflies, asserts that any two finite filtrations have isomorphic refinements,
whence any two simple finite filtrations must be isomorphic (Jordan- Hölder). A module allowing
finite simple filtrations is said to be of finite length. It is both artinian and noetherian and can,
moreover, be expressed as a direct sum M = M1 ⊕ · · · ⊕Mr of indecomposable pieces, which may,
however, not be simple. Up to isomorphism and reordering of indices, these pieces are unique by
the Theorem of Krull-Remak-Schmidt, which is most Fittingly derived from the fact that a non-
invertible endomorphism of an indecomposable piece must be nilpotent. It is important to note
that, so far on this page, R was not required to be commutative. The artinian-noetherian condition
is always fulfilled for modules which are also finite dimensional vector spaces. The aforementioned
results are most frequently used in representation theory.

From now on, let R again be commutative and noetherian. If dimR > 0, the powers of a
maximal ideal are necessarily distinct and any hopes for finite length go up in smoke. However,
unique decomposition into indecomposables is not limited to the artinian context — cf. modules
over principal domains. Taking a cue from the latter, we consider an R-module M coprimary if
every a ∈ R acts on it either injectively or nilpotently. The nilpotent actors a will then form a
prime ideal P ⊂ R associated to M , and M is called P -coprimary.

The terminology in these parts is somewhat baffling because one always considers submodules
as well as factor modules. A submodule E′ ⊂ E is called primary (relative to E) if E/E′ is
coprimary. In particular, an ideal Q is primary if R/Q is coprimary. If P is the associated prime,
we always have some Pn ⊂ Q, but Pn itself may not be primary. However, if P is maximal, any
ideal caught between P and one of its powers is primary — whew!

Here is what we get in this general setting. Every fig R-module E is a subdirect sum of
coprimary modules; i.e. E ⊆ M1 ⊕ · · · ⊕Mr, and the projection maps E → Mi are ( separately)
surjective; the set of primes associated with the components in an irredundant “decomposition”
of this sort depends only on E, hence is denoted Ass(E); the components belonging to minimal
(jargon:“isolated”) elements of Ass(E) are actually unique themselves, provided that components
belonging to the same prime have been lumped together; even more: for the isolated components,
the kernels of the projection maps are unique as submodules (“primary” ones) of E. In fact,
these matters are usully dicussed in terms of kernels; i.e., one aims at representing a submodule
as an intersection of primary ones. In the case of E = R/I , we get the primary decomposition
I = Q1 ∩ · · · ∩Qr of an ideal I.

Apart from decompositions, the associated primes can be characterized as follows: P ∈ Ass(E),
iff R/P is isomorphic to a submodule of E, iff P is the annihilator of some x ∈ E. Every fig R-
module E has a finite filtration E ⊃ E1 ⊃ · · · ⊃ Em whose bits Ej/Ej+1 are isomorphic to some
R/Pj , with Pj prime; the primes occurring here include all the associated ones (but may not be
limited to them). If Supp(E) stands for the set of primes at which E has a non-trivial localization,
it turns out that P ∈ Supp(E) iff it contains an associated prime.
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Filters and Grades.

With any filtration E = E0 ⊃ E1 ⊃ · · · ⊃ En ⊃ · · · on an abelian group, we can associate two
new, and in some sense “nicer” groups:

G(E) =
∞⊕
n=0

En/En+1 and Ê = lim
←
E/En,

called graded group and completion, respectively. The latter is literally the completion in the
topology for which {En} is a fundamental system of neighbourhoods of 0, a handy fact when it comes
to comparing the effects of different filtrations. Applying these two processes to a commutative
ring R = E and En = In, where I ⊂ R is an ideal, we again obtain natural ring structures, G(R)
being a graded ring in the sense that AnAm ⊂ An+m, where we have set An = In/In+1 for the
“homogeneous” components. For instance, if R is a dedekind domain and I = P 6= 0 a prime ideal,
it is easy to see that G(R) ' k[t], the polynomial ring over k = R/P , and R̂ is the completed
discrete valuation ring R̂P , both of them principal domains. In general, R is noetherian if and only
if G(R) is noetherian; in that case G(R) ' G(R̂), and hence R̂ is noetherian.

From now on let R be noetherian, E a fig R-module with a stable I-filtration {En}, i.e. such
that IEn ⊆ En+1 with equality for n >> 0. Any two such filtrations are highly compatible: there
is a fixed m such that the (n+m)-th term of one is contained in the n-th term of the other (either
way) for all large n; in particular they yield the same topology on E. The Artin-Rees Lemma says
that the filtration {En ∩E′} induced on a submodule E′ ⊂ E is again stable. As a result, an exact
sequence 0→ E′ → E → E′′ → 0 gives rise to a similar sequence of I-adic completions. Moreover,
one can use it to show that ES → Ê is injective (Krull’s Theorem), where S = 1 + I — a set
obviously invertible (by geometric series) in R̂. Consequently R→ R̂ is injective if R is a domain.

In the noetherian setting it may well happen that every homogeneous piece Mn = En/En+1 of
G(E) is of finite length λ(Mn), so that the non-finiteness comes only from counting all the pieces.
Inverting Zeno’s paradox, we then form the Poincaré series

∑
n λ(Mn)tn, which by a theorem of

Hilbert-Serre represents a rational function with a very explicit denominator. If G(E) is generated
over G(R) by s elements from M1, this function is of the form f(t)(1 − t)−d with d ≤ s and
f(t) ∈ Z[t]. Comparing the Poincaré series with the binomial expansion, we see that there is a
polynomial h(x) ∈ Q[x] of degree d− 1, the Hilbert polynomial, such that λ(Mn) = h(n) for large
n. This is of particular interest when R is local and I is primary with respect to the maximal ideal
P (which makes R/I artinian and gives each Mn finite length). From h(x) we inductively get a
polynomial g(x) of degree d = d(E), whose leading term depends neither on I nor on the particular
filtration, and such that λ(E/En) = g(n) for large n. With the help of Artin-Rees (applied to
aE ⊂ E), one now proves that d(E/aE) < d(E) whenever a ∈ R acts injectively on E; whence it
follows by induction that dim(R) ≤ d(R). Since d(R) ≤ the local dimension δ(R) by construction,
and since the latter is ≤ dim(R) by an elementary argument, this establishes the equality of the
three notions (cf. blurb on dimension).
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Valuations and Absolute Values.

Let P be a prime ideal in a noetherian domain R with quotient field K. The basic idea of
a valuation is to study P -divisibility by counting: since

⋂
Pn = 0 (Krull), every a ∈ R lies in

a well-defined smallest power P v(a). The resulting function v : R → Z has the properties (1)
v(a + b) ≥ max{v(a), v(b)} and (2’) v(ab) ≥ v(a) + v(b). What distinguishes valuation theory is
its insistence on involving K: one wants to count not only “zeroes” but also “poles”. There is no
difficulty in extending v to the local ring RP , but to include all of K, the inequality (2’) should
be sharpened to (2): v(ab) = v(a) + v(b). This precision is supplied by unique ideal factorization
if RP is dedekind, e.g. if R is integrally closed and P of height 1; but in higher dimensions there
is trouble. For instance, if R = k[x, y, z] with xy − z3 = 0, and P = (x, y, z), we would have
v(x) + v(y) = 2 but v(xy) = 3.

Looking at it another way, forget R and start with a valuation v : K → Γ onto an (additive)
ordered group Γ without insisting that Γ = Z. Then the set A = {a ∈ K| v(a) ≥ 0} forms a ring
such that x ∈ A or x−1 ∈ A for any x ∈ K. Such a ring is called a valuation ring. It is always
integrally closed and local, and it always does correspond to a valuation v : K → Γ = K×/A×,
which is ordered by the image of the maximal ideal (minus 0) defining positivity. These general
valuations have two main virtues: their extendability and their relation to integrality. In fact, the
integral closure in K of any subring B is the intersection of all valuation rings containing B. As
to extendability, any local subring C of K (not necessarily with K as quotients) can be embedded
in a valuation ring which respects its maximal ideal. Consequently, any valuation on K can be
extended to any field K ′ ⊃ K. If [K ′ : K] is finite, so is the number of such extensions, as well
as the ramification index e = [Γ′ : Γ] for each of them; further, eΓ′ ⊂ Γ in each case, so that
Γ = Z ⇒ Γ′ = Z. Valuations with the latter property are called discrete. They are ulimately the
most useful ones, and the only ones having noetherian valuation rings.

Discrete valutions have one leg in valuation theory and the other in the theory of absolute
values, i.e. homomorphisms from K× to the positive reals satisfying the triangle inequality, which,
by setting |a|v = 2−v(a) looks like a weakened version of (1). Although topological games can also
be played with general valuations, absolute values have two important strengths in this respect:
any two of them induce the same topology on K iff each is a positive real power of the other; and, if
K is complete, any finite K-space has only one norm-topology compatible with the given absolute
value. If K is complete with respect to a discrete valuation v, it follows that there is exactly one
extension w of v to any field L of finite degree over K. More generally, if K̂ denotes the completion
of K, and if L = K[X]/(f(X)) for some separable monic polynomial, the completions L̂i of L with
respect to the various extensions wi of v to L are just the terms occurring in the decomposition
K̂[X]/(f(X)) ' L̂1×. . .×L̂r which arises from the irreducible factorization f(X) = f1(X) · · · fr(X)
over K̂. The latter can in large measure be studied in the the residue class field k of v (i.e. valuation
ring mod maximal ideal) because Hensel’s Lemma allows the lifting of relatively prime polynomial
factorizations from k to K̂.

The relaxation of (1) to the triangle inequality is no mere whim. In number theory it permits
the inlusion of ordinary absolute values corresponding to the various embeddings K → C, which
turns out to be essential. Thus the approximation theorem of Artin-Whaples, which proclaims the
density of K embedded diagonally in a cartesian product K×· · ·×K with topologically inequivalent
absolute values, is more than a corollary of the Chinese Remainder Theorem.
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Example of a Stably Free Module.

Remember that the tangent bundle of the 2-sphere S2 is non- trivial; indeed, not only does
S2 fail to be parallelizable — it does not even have one nowhere vanishing vector-field. However,
when one adds the normal bundle, which is trivial, the result is a trivial R3 - bundle. Thus, in this
case, non-trivial + trivial = trivial; weird, eh?

Our aim is to describe a (precise) algebraic counterpart to this phenomenon. We begin ab-
stractly with an arbitrary commutative ring R, an element α = [a1, . . . , an] ∈ Rn, and the submod-
ule Rα it generates.

LEMMA: Suppose that Rα is faithful (hence free). Then Rn/Rα is projective (hence stably free),
if and only if there is a β ∈ Rn with β · α = 1; it is free if and only if there is an M ∈GLn(R) with
α as its first row.
Proof: αt is the n× 1-matrix of the injection R→ Rn whose image is Rα. The latter is a direct
summand iff this matrix has a left inverse β. The rest is clear.

NOTE: If Rα ∼= R/I for some ideal I, the splitting of the corresponding injection R/I → Rn (i.e.
projectivity of Rn/Rα) is equivalent to the existence of a β ∈ Rn such that β ·α = 1−e, with e ∈ I
an idempotent since eα = 0 implies e(1− e) = 0.

REMARK: Suppose that, for every n, any left-invertible αt can be embedded into an invertible
square matrix. Then every finite stably free R-module is free.
Proof: By the lemma, E ⊕ R ∼= Rn implies that E is free. Hence E ⊕ Rm ∼= Rn implies that
E ⊕Rm−1 is free, whence (induction) E is free.

EXAMPLE: Let R be any ring of continuous functions f : S2 → R containing the constant
function 1 and the coordinate functions x, y, z. Put α = [x, y, z]. Then R3 = Rα ⊕ P , where P is
non-free projective.

Indeed, since x2 + y2 + z2 = 1, the ideal A is all of R, and the lemma ensures that Rα is a
direct summand. If the complementary summmand P were free, there would be a basis {α, β, γ} of
R3. Then det[α, β, γ] would be a unit in R, in particular it would be a function vanishing nowhere
on S2. More particularly still, the vector functions α and (say) β would never be parallel anywhere
on S2, and β − (β · α)α would be a non-vanishing vector field.

The smallest example of R would be Z[x, y, z]/(x2 + y2 + z2 − 1). Whatever we take for R,
it is clear that the kernel of ξ 7→ ξ − (ξ · α)α is exactly Rα; therefore this map identifies P with
an R-module of vector fields on S2. Evidently the summands Rα and P correspond to the normal
and the tangent bundles of the sphere, respectively.

All this works, of course, for spheres of any even dimension.


