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5. Basic Linear Lore. Much of linear algebra over a field K can be deduced from the following
basic lemma in which, for brevity, a matrix will be called strongly regular if it is a product of addition
or permutation type elementary matrices. In particular, such a matrix is square and has an explicit left
and right inverse. On the other hand, a matrix A will be called singular if it has a non-zero kernel N (A).
Obviously these two properties exclude one another.

LEMMA: Let A be an m × n matrix over K. Then there exist strongly regular matrices M and N such
that

MAN =

D 0

0 0

 where D =

 d1 0
. . .

0 dr

 with di 6= 0.

Proof: Let α(M,N) stand for the entry in the first row and first column of MAN . If α(M,N) = 0 for all
M,N , then obviously A = 0, and we are finished. Otherwise there is a pair M1, N1 such that

M1AN1 =

 d1 X

Y A′

 ,
where A′ is an (m − 1) × (n − 1)-matrix, and d1 6= 0. Multiplying on the left by addition-type elementary
matrices, we make Y = 0. Similarly, operating from the right, we modify N1 to get X = 0. The proof is
finished by induction.

THEOREM: Let A be an m× n matrix with m ≤ n. Then N (A) = {0} ⇐⇒ A is square and invertible.
Proof: For invertible M,N it is easy to see that A is non-singular if and only if MAN is. If the latter is as
above, non-singularity clearly means r = m = n. But then MAN = D is an invertible diagonal matrix, and
A = M−1DN−1 is invertible.

COROLLARY: An independent subset of the span of r vectors cannot have more than r elements.
Proof: Suppose W1, . . . ,Ws are in the span of V1, . . . , Vr; say Wj = a1jV1 + · · · + arjVr, for j = 1, . . . , s.
Consider the linear combination

x1W1 + · · ·+ xsWs = (a11x1 + · · ·+ a1sxs)V1 + · · ·+ (ar1x1 + · · ·+ arsxs)Vs.

If s > r, our theorem guarantees the existence of a non-trivial s-tuple x1, . . . , xs such that all this is zero,
because the matrix (aij) involved here has more columns than rows, hence must be singular.

Note: Let V be a subspace of Kn. By the Corollary, any two bases of V have the same cardinality dimV.
Moreover, any independent {W1, · · · ,Ws} ⊂ V is contained in a basis of V.

To see this, start with W1, . . . ,Ws and keep adjoining more vectors Ws+1,Ws+2, . . . ∈ V (if you can),
while maintaining the independence of your collection. By the Corollary, this process cannot go beyond a
total of n vectors. At some point, therefore, your set {W1, . . . ,Ws+p} must stop being enlargeable; i.e. any
additional vector V ∈ V must be a linear combination of the ones you already have.

This result also shows that dimV is a meaningful measure of the “size” of V. More precisely, if V
contains a smaller subspace V ′, we can enlarge a basis of V ′ to one of V, thus proving that dimV ′ < dimV.

Exercise: To test your understanding of dimension, try to prove the following identities:

n− dimN (A) = dim C(A) = dimR(A),

where C and R denote the spans of the columns and of the rows, respectively. For the first, take a basis
{W1, . . . ,Wk} of N (A) and extend it to one {W1, . . . ,Wn} of Kn; then show that {AWk+1, . . . , AWn} is a
basis of C(A). For the second, note that both dimensions are invariant under elementary row and column
operations, hence equal to those of C(MAN) and R(MAN).
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6. Real Matrices. One of the most central theorems about real matrices is also one of the easiest to prove.
Its geometric version says that any real linear transformation has the effect of mapping some orthonormal
basis of the domain onto an orthogonal subset of the range. Here is a simple proof of the matrix version.

THEOREM: Let A be an m× n real matrix. Then there exist orthogonal matrices M and N such that

MAN =

D 0

0 0

 where D =

 d1 0
. . .

0 dr

 with di ≥ di+1 > 0.

Proof: Let O(n) be the set of all n × n orthogonal matrices. For M ∈ O(m) and N ∈ O(n), let α(M,N)
stand for the entry in the first row and first column of MAN . Let d1 the greatest possible value occurring
among these.

Since O(m)×O(n) is closed and bounded, there is a pair M1, N1 for which this value is actually attained.
That is, we can obtain that

M1AN1 =

 d1 X

Y A′

 ,
where A′ is an (m− 1)× (n− 1)-matrix. Now we claim that X = 0 and Y = 0 are zero rows and columns.
Indeed, if X were non-trivial, the first row ρ1 of M1AN1 would have length d > d1. Then we could multiply
on the right by the reflection H which takes ρ1 into [d, 0, . . . , 0] and create a value α(M,N) = d > d1.
Similarly Y = 0. Obviously, none of the entries of A′ can exceed d1 in absolute value (otherwise it could be
permuted to the upper left), and this is true for all the possible forms of A′. We are finished by induction.

The real numbers d1 ≥, . . . ,≥ dr > 0 are known as the singular values of A.

UNIQUENESS: The n × n matrix B = ATA has a very simple effect on the columns u1, · · · , un of N ,
namely, Bui = µiui, where µi = d2

i for i ≤ r and 0 beyond. Indeed, NTBN = (MAN)TMAN = ∆ is a
diagonal matrix with diagonal entries µi as described. Now the identity BN = N∆ establishes our claim.

To prove uniqueness of the singular values di it clearly suffices to characterize the µi as being the only
numbers such that (B − µI)u = 0 for some u 6= 0. But for u =

∑
aiui, we get (B − µI)u =

∑
ai(µi − µ)ui,

which is never 0, unless µ is one of the µi.
More geometrically, the di can also be retrieved from the image under A of the appropriate unit sphere.

COROLLARY: Every symmetric n× n real matrix A has an eigenline.
Proof: Let u 6= 0 be one of the columns of N , so that A2u = ATAu = µu, as above. Put µ = λ2. Then u
is annihilated by A2 − µI = (A+ λI)(A− λI). If (A− λI)u = v 6= 0, then v generates such a line; if v = 0
then u does.

For symmetric A it is trivial to show that the orthocomplement of any invariant subspace is itself
invariant. Hence, by induction, the Corollary yields a set of n mutually orthogonal eigenlines (this is the
famous “Spectral Theorem”). Moreover, if B is symmetric and commutes with A, it can be restricted to
ker(A− λI) 6= 0; therefore the two matrices have a common eigenline, hence — by induction — a complete
orthogonal set of such.

(All arguments on this page go through without a hitch for complex matrices if one changes “orthogonal”
and “symmetric” to “unitary” and “hermitian”, respectively, and replaces the transpose AT by its complex
conjugate ĀT . Writing a complex matrix as C = A + iB with A,B hermitian, we again get a spectral
theorem for C whenever A and B commute.)
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7. Invariant Factors. Here is another variation on the “MAN” theme introduced in §5, this time
applied to matrices with integer entries. Note that a strongly regular matrix M with entries in Z (the
integers) is invertible over Z, that is: M−1 also has integer entries (it suffices to check this for Gaussian
matrices and permutation matrices, where it is obvious).

THEOREM: Let A be an m× n matrix over Z. Then there exist strongly regular matrices M and N such
that

MAN =

D 0

0 0

 where D =

 d1 0
. . .

0 dr

 with di | di+1 6= 0.

Proof: Let S be the set of all non-zero entries of MAN as M and N range over all strongly regular matrices
of the appropriate sizes. Take d1 ∈ S with |d1| minimal. By definition, we then have

M1AN1 =

 d1 X

Y A′

 ,
where X is a row, Y is a column, and A′ is an (m− 1)× (n− 1)-matrix. We claim that X,Y ≡ 0 modulo d1.

Indeed, if y is any non-zero entry of Y (say in row µ), we may write it as y = qd1 + r, with |r| < |d1|.
Multiplying M1AN1 on the left by the Gaussian matrix I − qEµ,1, we obtain the entry r in the place of y,
contradicting the minimality of |d1|, unless r = 0 as claimed. Hence we can make Y = 0 by such Gaussian
multiplications, and similarly (by right multiplications) X = 0.

Assuming this done, we conclude that all entries of A′ are divisible by d1, because any one of them can
be made to appear in the first column by a suitable addition of columns (i.e., Gaussian multiplication on
the right), thus playing the role of the y in the argument above. The proof is finished by induction.

NOTE: The integers d1, . . . , dr are known as the invariant factors of A. Their uniqueness can be proved
via determinants of submatrices of A as follows. For every ν ≤ min(m,n), let Eν(A) ⊆ Z be the additive
group generated by all ν × ν subdeterminants of A. Convince yourself that Eν(A) remains unchanged by
left or right multiplication of A by strongly regular matrices. Hence Eν(A) = Eν(MAN) = (d1 · · · dν)Z.

Congruence modulo a matrix.

An m×n integer matrix A can be used to define a congruence relation on the m-fold Cartesian product
Zm as follows: given two columns C1 and C2 in Zm, we write C1 ≡ C2 (mod A) if C1 − C2 = AX for
suitable X ∈ Zn. A careful imitation of the proof given for the case m = n = 1 shows that this relation is
compatible with addition (and “scalar multiplication” by individual integers). Hence the congruence classes
form an additive group, denoted by Zm/AZn.

What happens if A is multiplied on the left by an invertible matrix M? Well, C1 − C2 = AX ⇐⇒
MC1−MC2 = MAX, in other words, left multiplication by M changes a congruence class modulo A into a
congruence class modulo MA, thus giving a homomorphism Zm/AZn −→ Zm/MAZn. Since M−1 reverses
this map, it is an isomorphism.

What happens if A is multiplied on the right by an invertible matrix N? Nothing: C1 −C2 = AX ⇐⇒
C1 − C2 = ANX ′, because any X can be rewritten as NX ′, with X ′ = N−1X.

COROLLARY: Let A be an m × n matrix over Z with invariant factors d1, . . . , dr. Then Zm/AZn is
isomorphic to the direct product Z/d1Z× · · · × Z/drZ× Zm−r.
Proof: Let M and N be as in the theorem, and put A∗ = MAN . By the preceding discussion, M induces
an isomorphism Zm/AZn −→ Zm/A∗Zn.
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8. Finite Abelian Groups. We start by characterizing subgroups of the additive group Zm.

LEMMA: Every subgroup of Zm is of the form AZm, where A is an m×m matrix.
Proof: If S is the given subgroup, we need to find m columns C1, . . . , Cm in S such that every element of
S can be expressed as x1C1 + · · ·+ xmCm with xi ∈ Z.

Let λ : S −→ Z be the projection on the last component. Since ker(λ) can be identified with a subgroup
S′ ⊆ Zm−1, induction gives us columns C1, . . . , Cm−1 which generate S′. On the other hand, im(λ) = λ(S)
is a subgroup of Z and therefore equal to dZ for some integer d. Pick Cm ∈ S such that λ(Cm) = d.

Now for any C ∈ S, we have λ(C) = kd, and hence C − kCm ∈ S′, with k ∈ Z. Therefore C − kCm =
x1C1 + · · ·+ xm−1Cm−1 with suitable xi ∈ Z, as desired.

THEOREM: Every finite abelian group is isomorphic to a direct product of cyclic groups.
Proof: If H is the finite group in question, it is clearly possible to find finitely many elements h1, . . . , hm
which generate H. This gives a surjective homomorphism ψ : Zm −→ H by

ψ(x1, . . . , xm) = x1h1 + · · ·+ xmhm,

with H written additively. By the lemma, ker(ψ) = AZm for a suitable matrix A, and by the corollary on
the last page it follows (via First Iso. Thm.) that H is isomorphic to Z/d1Z × · · · × Z/dmZ. (If you were
too generous with your generators, some of the di will equal 1 and may be omitted in this decomposition.)

Two Further Decompositions.

Exercise 1: Let H be as above. For any integer n, define the subgroup H(n) = {x ∈ H | nx = 0}.
Supposing that n = dk with (d, k) = 1, show that

(a) H(d) ∩H(k) is trivial (= 0), and
(b) H(n) = H(d)×H(k) is a direct product.

For suitable n, we have H(n) = H. Therefore the prime factorization n = ps11 · · · p
st
t and repeated

application of this exercise yield the “primary decomposition”

H = H(ps11 )× · · · ×H(pst
t ).

The components of this decomposition are unique. The first one, for instance, consists of all elements of H
whose order is a power of p1.

Exercise 2: With H still written additively, assume that H = H(ps) for some prime p. Applying the
theorem, suppose you get

H = Z/pν1Z× · · · × Z/pνrZ,

with ν1 ≥ · · · ≥ νr > 0. Then we say that H is of type (pν1 , · · · , pνr ). Prove:
(a) H is of type (pν1 , · · · , pνr ) ⇐⇒ H(p) is of type (p, · · · , p) with r terms and pH is of type

(pν1−1, · · · , pνz−1), where z ≤ r is the largest index with νz > 1.
(b) Another abelian group K is isomorphic to H if and only if it is p-primary of the same type.

A convenient way of checking wheher two arbitrary finite abelian groups are isomorphic is to chop them
up into primary components and then look at the type of the latter.
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