
Math 322, Autumn 1993, Supplementary Notes

9. Group actions. If G is a group and A is a set, a G-action on A is a map G× A −→ A (denoted by
g, a 7→ ga) satisfying (gh)a = g(ha) and 1a = a. It induces the following equivalence relation on A: x ≡ y
mod G ⇐⇒ ∃g ∈ G such that y = gx. (Note how you need the group axioms for this!). Hence it partitions
the set A into equivalence classes, which are sets of the form Gx (x ∈ A) known as orbits.

For any x ∈ A, the subgroup Gx = {g ∈ G | gx = x} is called the stabilizer of x. Stabilizers for members
of the same orbit are conjugate: if y = gx one easily checks that Gy = gGxg

−1.
A G-action is called transitive if it consists of a single orbit. Example: given a subgroup H, let A =

G/H = {gH | g ∈ G} with G acting by left multiplication; this is obviously transitive. Conversely, if A = Gx
is transitive, the map G −→ A, by g 7→ gx, induces a G-isomorphism between A and G/H, where H = Gx

is the stabilizer. Indeed, g1x = g2x ⇐⇒ g−1
2 g1x = x.

This gives a bijection between conjugacy classes of subgroups on the one hand and isomorphism classes
of transitive G-actions on the other.

An application: Sylow’s Theorem.

THEOREM: Let |G| = mpr, where p is a prime not dividing m. Then,
(i) G has a subgroup of order pr (called a Sylow p-subgroup).

(ii) Any two such subgroups are conjugate in G, and every p-subgroup of G is contained in one of them.
(iii) The number of such subgroups is ≡ 1 mod p and divides m.
Proof: (Wielandt) Let G act by left multiplication on the family A of subsets U ⊂ G such that |U | = pr.
Then one easily checks that

(a) |A| ≡ m (mod p) (b) U ∈ A =⇒ |GU | ≤ pr.

Existence. Partition A into orbits. By (a), at least one of these, say T = {gU | g ∈ G}, has cardinality
prime to p. Thus the order of GU must be divisible by pr, hence must equal pr, by (b).
Conjugacy. Let H ⊆ G be any subgroup of order ps, and observe its action on T . Since all non-trivial orbits
have p-power cardinality, there must also be trivial ones, i.e. HV = V for some V ∈ T . Hence H ⊆ GV

(with equality if s = r), and GV is conjugate to GU .
Number. Finally let H = GU act by conjugation on the set Sylp(G) of all Sylow p-subgroups of G. If
this action had a fix-point K 6= H, the equation HK = KH would imply that HK is a group with two
distinct normal Sylow p-subgroups — an impossibility by (ii). Hence the only fix-point is H, all other orbits
have p-divisible cardinalities, and therefore |Sylp(G)| ≡ 1 mod p. This number divides m, because it is the
cardinality of the orbit of H under conjugation by G (the stabilizer of H under this action is at least H).

Two Virtues of p-Groups.

Let F ⊆ A be the set of fixed points (one-point orbits) of a group action G × A −→ A, where G has
order pr. Since all the other orbits have p-power cardinalities, we have |F | ≡ |A| (mod p). In particular,
when G acts on itself by conjugation, the neutral element cannot be the only fixed point. In other words:

every non-trivial p-group G has a non-trivial centre Z(G).
Since G/Z(G) has order ≤ pr−1, it now follows by induction (starting with r = 1) that

every non-trivial p-group has a normal subgroup of index p.

More generally, any finite group is called nilpotent, if every non-trivial quotient group has a non-trivial
centre; it is called solvable if every non-trivial subgroup has a normal subgroup of prime index. Nilpotency
implies solvability (induction as above), but not vice versa — cf. S3.
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10. The Platonic groups. One of the key elements in this paragraph is the following simple diophantine
equation

n+ 2 = n1 + n2 + n3 , with n > ni > 1 and ni | n . (∗)
Exercise 1: Prove that the only integer solutions (n, n1, n2, n3) of (∗) are the infinite sequence (2k, k, k, 2)
and the three special solutions

(i) (12, 6, 4, 4) , (ii) (24, 12, 8, 6) , (iii) (60, 30, 20, 12) . (†)

(Hint: Show that at least one of the ni must be = n/2 and that, if none of them equals 2, another one must
be = n/3. Then think about the remaining one.)

Our task is to study the patterns which can occur when a finite group G < SO3 of rotations acts on the
unit sphere S ⊂ R3. Every non-trivial ρ ∈ G has an axis which meets S in two antipodal points. Since ρ
leaves them fixed, each of these points has a non-trivial stabilizer. Such points are called “poles” of G; they
form a finite subset P ⊂ S, invariant under G.

Concentrating on the group action G × P −→ P , we suppose that it has orbits T1, . . . , Tr with cardi-
nalities n1, . . . , nr, and that G has order n. These numbers are related by the formula:

2 (n− 1) = (n− n1) + · · ·+ (n− nr). (∗∗)

To prove this, we count the number of non-trivial ρ ∈ G in two ways. Every pole w ∈ P is left fixed by
fw = |Gw| elements of G (including the identity), and every non-trivial ρ ∈ G belongs to exactly 2 antipodal
stabilizers Gw (the poles of its axis). Hence, if we sum the numbers (fw− 1) over all w ∈ P , we are counting
every ρ 6= 1 twice, and get 2(n − 1). On the other hand, summing (fw − 1) over the orbit Ti, we obtain
ni(fi − 1) = (n − ni), because all poles w ∈ Ti have fw = fi = n/ni. Equating the two counts yields the
desired equation (∗∗). Let us refer to the (r + 1)-tuple (n, n1, . . . , nr), with n > n1 ≥ n2 ≥ · · · ≥ nr, as the
“signature” of G.

LEMMA 1: Unless the finite group G < SO3 is cyclic or dihedral (i.e. essentially planar), its signature is
one of the three displayed in (†).
Proof: If nr = 1, there must be a pole w with fw = n, i.e., a fix-point. Then all ρ ∈ G have the same axis,
and we are dealing with a cyclic group. Signature: (n, 1, 1).

If nr = 2, the equation (∗∗) reads n = (n − n1) + · · · + (n − nr−1). Since ni | n, we have ni ≤ n/2 for
all i, which means that this equation can only be satisfied by putting n1 = n2 = n/2 and r = 3. Signature:
(n, n/2, n/2, 2). The two poles in the third orbit must be antipodal, and their common stabilizer be a cyclic
group of order n/2. Hence G is dihedral.

If nr > 2, we can sum the inequalities n/2 ≤ (n−ni) < (n− 2) and obtain rn/2 ≤ 2 (n− 1) < r (n− 2),
whence we conclude that r = 3 and 2 + n = n1 + n2 + n3. The result of Exercise 1 now yields the lemma.

THEOREM 1: If G < SO3 has signature (i) or (ii), its action on Syl3(G) defines an isomorphism of G with
A4 or S4, respectively.
Proof: First we show that |Syl3(G)| = 4 in both cases. Indeed, every ρ ∈ G of order 3 lies in the common
stabilizer Gv = Gw of a pair of antipodal poles whose orbits have cardinality divisible by n/3, hence equal
to 4 in Case (i) and to 8 in Case (ii). In either case, a total of 8 poles and 4 stabilizers is involved. Since the
latter are exactly of order 3, they are the Sylow 3-subgroups. Let us label them H1,H2,H3, H4.

The normalizers Ki of Hi — i.e., the stabilizers of G acting on Syl3(G) — have order n/4. In Case (i),
we have Ki = Hi ' A3. In Case (ii), the order of Ki is 6, whence Ki ' S3 because there are no poles of
order 6k (as there are no orbits of cardinality 4/k). In either case, the intersection of the Ki is the kernel
N of the homomorphism G −→ S4 given by this G-action. To finish the proof, we must show that N = {1}
and that A4 is the only subgroup of index 2 in S4. This will be done in the following two exercises.

Exercise 2: Let H < G be finite groups, and suppose that H is the unique minimal non-trivial normal
subgroup of its normalizer K = NH(G) 6= G. Show that G acts faithfully (by conjugation) on the set of all
conjugates of H.
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Exercise 3: For n > 2 show that An is generated by 3-cycles [hint: (ij)(kl) = (ij)(jk)2(kl)]. Conclude that
An is in the kernel of any homomorphism Sn −→ S2, and hence is the only subgroup of index 2 in Sn.

LEMMA 2: Let ρ, σ, and τ be distinct elements of order 2 in SO3 such that σρ = ρσ and τρ = ρτ . Then
the axis of ρ is perpendicular to those of σ and τ but equal to that of the rotation στ .
Proof: As commuting symmetric operators, ρ and σ are simultaneously diagonalizable. Since rotations
through 180◦ are completely determined by their axes, the axis of ρ must be a non-axis eigenvector of σ,
hence orthogonal to the axis of σ. Ditto for ρ and τ .

The axis of ρ is thus reversed by both σ and τ , hence left fixed by their product. (Incidentally, the angle
of the rotation στ equals twice the angle between the axes of σ and τ .)

THEOREM 2: If G < SO3 has signature (iii), its action on Syl2(G) defines an isomorphism of G with A5.
Proof: Since the signature shows no orbits of cardinality 15/k, there are no elements of order 4. Hence
every H ∈ Syl2(G) consists of the identity and three “turns”, i.e., elements of order 2. Another look at the
signature shows that G contains exactly 15 such turns, each sharing its axis with no other element of G.

Let 〈ρ, σ〉 and 〈ρ, τ〉 be non-trivially intersecting members of Syl2(G). Since ρ shares its axis with no
other element of G, Lemma 2 forces στ ∈ G to equal ρ, whence 〈ρ, σ〉 = 〈ρ, τ〉. The 15 turns of G therefore
make up 5 Sylow 2-groups H1, H2, H3, H4, H5.

As in the proof of Theorem 1, we now consider the normalizers Ki of these groups. They cannot be
cyclic or dihedral, since the signature shows no orbits of cardinality 10/k — as it would if G had elements
of order 6. Hence, by Lemma 1 and Theorem 1, each Ki is isomorphic to A4 and contains the Klein 4-group
Hi as its unique minimal non-trivial normal subgroup. By Exercise 2, the G-action on Syl2(G) defines an
injection G −→ S5; by Exercise 3, its image is A5.

Finite subgroups of GL3(R).

PROPOSITION: Every finite subgroup G < SL3(R) which is neither cyclic nor dihedral must be isomorphic
to A4, S4, or A5.
Proof: Let α be the sum of all µTµ as µ ranges over G (here µT denotes the transpose of the matrix µ).
Then it is easy to see that α is symmetric and positive definite, hence has a square root β with the same
properties. Moreover, µTαµ = α for all µ ∈ G. Since βT = β and β2 = α, it follows for all µ ∈ G that

(βµβ−1)T (βµβ−1) = β−1µTαµβ−1 = β−1αβ−1 = I,

i.e., that βµβ−1 is orthogonal. In other words, G is conjugate in GL3(R) to a finite group of rotations.

Exercise 4: Let T < GL3(R) be the subgroup consisting of ±I. Show that every finite subgroup H < GL3(R)
is contained in SL3(R) × T . Conclude that H is either equal to G × T or isomorphic to G, where G is a
suitable subgroup of SL3(R). (Hint: Restricted to H, the projection SL3(R) × T −→ SL3(R) is either
injective or has kernel T .)

Regular polyhedra.

Exercise 5: Remember the set P ⊂ S of poles. We know P = T1 ∪ T2 ∪ T3, with |Ti| = ni. For each of
the cases in (†), show that the points of T3 are the vertices of a regular n2-hedron with f3 triangular faces
around each vertex.

We shall do this exercise in Case (iii), leaving the two easier cases for the reader. Pick a pair v, v1 ∈
T3 with minimal angular distance δ(v, v1) > 0. Since |Gv| = f3 = 5, the Gv-orbit of v1 consists of 5
“neighbours” {v1, . . . , v5} of v. All these points lie in the “northern” hemisphere, whose pole is v, because
δ(v, v1) ≤ δ(v1, v2) ≤ 72◦. A similar system of 6 points populates the southern hemisphere — and that
accounts for all 12 elements of T3.

Around v we have 5 “triangles” ∆i = (v, vi, vi+1), with i ∈ F5, and around every ρv ∈ T3, with ρ ∈ G,
a congruent system ρ∆i. To see that ∆1 is equilateral, note that the great circles joining v to vi and vi+1

make an angle of 72◦ at v. This must also happen at v2, with respect to its neighbours, one of which is v.
In particular, the two neighbours of v2 adjacent to v must lie in the northern hemisphere, and hence can be
none other than v1 and v3. Therefore δ(v, v1) = δ(v, v2) = δ(v1, v2).
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