Math 322, Autumn 1993, Supplementary Notes

9. Group actions. If G is a group and A is a set, a G-action on A is a map G x A — A (denoted by
g,a — ga) satisfying (gh)a = g(ha) and la = a. It induces the following equivalence relation on A: x =y
mod G <= Jg € G such that y = gz. (Note how you need the group axioms for this!). Hence it partitions
the set A into equivalence classes, which are sets of the form Gz (x € A) known as orbits.

For any = € A, the subgroup G, = {g € G | gz = x} is called the stabilizer of x. Stabilizers for members
of the same orbit are conjugate: if y = gx one easily checks that G, = gGg7 1.

A G-action is called transitive if it consists of a single orbit. Example: given a subgroup H, let A =
G/H = {gH | g € G} with G acting by left multiplication; this is obviously transitive. Conversely, if A = Gz
is transitive, the map G — A, by g — gz, induces a G-isomorphism between A and G/H, where H = G,
is the stabilizer. Indeed, g1z = g2 <— g;lglw =z

This gives a bijection between conjugacy classes of subgroups on the one hand and isomorphism classes
of transitive G-actions on the other.

An application: Sylow’s Theorem.
THEOREM: Let |G| = mp", where p is a prime not dividing m. Then,
(i) G has a subgroup of order p” (called a Sylow p-subgroup).
(ii) Any two such subgroups are conjugate in G, and every p-subgroup of G is contained in one of them.
(iii) The number of such subgroups is = 1 mod p and divides m.
Proof: (Wielandt) Let G act by left multiplication on the family A of subsets U C G such that |U| = p".
Then one easily checks that

(a) |Al=m (mod p) by UeA = |Guy|<p".

Ezistence. Partition A into orbits. By (a), at least one of these, say 7 = {gU | g € G}, has cardinality
prime to p. Thus the order of Gy must be divisible by p”, hence must equal p”, by (b).

Conjugacy. Let H C G be any subgroup of order p°, and observe its action on 7. Since all non-trivial orbits
have p-power cardinality, there must also be trivial ones, i.e. HV =V for some V € 7. Hence H C Gy
(with equality if s = r), and Gy is conjugate to Gy .

Number. Finally let H = Gy act by conjugation on the set Syl (G) of all Sylow p-subgroups of G. If
this action had a fix-point K # H, the equation HK = KH would imply that HK is a group with two
distinct normal Sylow p-subgroups — an impossibility by (ii). Hence the only fix-point is H, all other orbits
have p-divisible cardinalities, and therefore [Syl,(G)| = 1 mod p. This number divides m, because it is the
cardinality of the orbit of H under conjugation by G (the stabilizer of H under this action is at least H).

Two Virtues of p-Groups.

Let FF C A be the set of fixed points (one-point orbits) of a group action G x A — A, where G has
order p". Since all the other orbits have p-power cardinalities, we have |F| = |A| (mod p). In particular,
when G acts on itself by conjugation, the neutral element cannot be the only fixed point. In other words:

every non-trivial p-group G has a non-trivial centre Z(G).
Since G/Z(G) has order < p"~1, it now follows by induction (starting with r = 1) that

every non-trivial p-group has a normal subgroup of index p.
More generally, any finite group is called nilpotent, if every non-trivial quotient group has a non-trivial

centre; it is called solvable if every non-trivial subgroup has a normal subgroup of prime index. Nilpotency
implies solvability (induction as above), but not vice versa — cf. Ss.



10. The Platonic groups. One of the key elements in this paragraph is the following simple diophantine
equation
n+2=ny+ns+ng, with n>n; >1 and n; | n. (%)

FEzercise 1: Prove that the only integer solutions (n,n1,ng,n3) of (%) are the infinite sequence (2k, k, k, 2)
and the three special solutions

(i) (12,6,4,4), (i) (24,12,8,6), (i) (60,30,20,12). ©)

(Hint: Show that at least one of the n; must be = n/2 and that, if none of them equals 2, another one must
be = n/3. Then think about the remaining one.)

Our task is to study the patterns which can occur when a finite group G < SOj3 of rotations acts on the
unit sphere S C R?. Every non-trivial p € G has an axis which meets S in two antipodal points. Since p
leaves them fixed, each of these points has a non-trivial stabilizer. Such points are called “poles” of G; they
form a finite subset P C S, invariant under G.

Concentrating on the group action G x P — P, we suppose that it has orbits 71, ..., 7T, with cardi-
nalities nq, ..., n,, and that G has order n. These numbers are related by the formula:
2(n—1)=Mn—-n1)+---+(n—n,.). ()

To prove this, we count the number of non-trivial p € G in two ways. Every pole w € P is left fixed by
fw = |G| elements of G (including the identity), and every non-trivial p € G belongs to exactly 2 antipodal
stabilizers G, (the poles of its axis). Hence, if we sum the numbers (f,, — 1) over all w € P, we are counting
every p # 1 twice, and get 2(n — 1). On the other hand, summing (f,, — 1) over the orbit T;, we obtain
n;(fi — 1) = (n — n;), because all poles w € T; have f,, = f; = n/n;. Equating the two counts yields the
desired equation (xx). Let us refer to the (r + 1)-tuple (n,n1,...,n,), with n > ngy > ng > --- > n,, as the
“signature” of G.

LEMMA 1: Unless the finite group G' < SOjs is cyclic or dihedral (i.e. essentially planar), its signature is
one of the three displayed in ().

Proof: If n, = 1, there must be a pole w with f,, = n, i.e., a fix-point. Then all p € G have the same axis,
and we are dealing with a cyclic group. Signature: (n,1,1).

If n, = 2, the equation (xx) reads n = (n —ny) +---+ (n — n,—1). Since n; | n, we have n; < n/2 for
all 4, which means that this equation can only be satisfied by putting ny = ny = n/2 and r = 3. Signature:
(n,n/2,n/2,2). The two poles in the third orbit must be antipodal, and their common stabilizer be a cyclic
group of order n/2. Hence G is dihedral.

If n, > 2, we can sum the inequalities n/2 < (n —n;) < (n —2) and obtain rn/2 <2(n—1) <r(n—2),
whence we conclude that » = 3 and 2 + n = ny + no + n3. The result of Exercise 1 now yields the lemma.

THEOREM 1: If G < SOj3 has signature (i) or (ii), its action on Syl;(G) defines an isomorphism of G with
Ay or Sy, respectively.

Proof: First we show that [Syl;(G)| = 4 in both cases. Indeed, every p € G of order 3 lies in the common
stabilizer G, = G,, of a pair of antipodal poles whose orbits have cardinality divisible by n/3, hence equal
to 4 in Case (i) and to 8 in Case (ii). In either case, a total of 8 poles and 4 stabilizers is involved. Since the
latter are ezactly of order 3, they are the Sylow 3-subgroups. Let us label them H;, Ho, Hs, Hy.

The normalizers K; of H; — i.e., the stabilizers of G acting on Syl;(G) — have order n/4. In Case (i),
we have K; = H; ~ As. In Case (ii), the order of K; is 6, whence K; ~ S3 because there are no poles of
order 6k (as there are no orbits of cardinality 4/k). In either case, the intersection of the K; is the kernel
N of the homomorphism G — Sy given by this G-action. To finish the proof, we must show that N = {1}
and that Ay is the only subgroup of index 2 in Sy. This will be done in the following two exercises.

Ezercise 2: Let H < G be finite groups, and suppose that H is the unique minimal non-trivial normal
subgroup of its normalizer K = Ny (G) # G. Show that G acts faithfully (by conjugation) on the set of all
conjugates of H.
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Exercise 3: For n > 2 show that A, is generated by 3-cycles [hint: (i5)(kl) = (ij)(jk)?(kl)]. Conclude that
A, is in the kernel of any homomorphism S,, — S5, and hence is the only subgroup of index 2 in S,.

LEMMA 2: Let p, 0, and 7 be distinct elements of order 2 in SO3 such that op = po and 7p = pr. Then
the axis of p is perpendicular to those of o and 7 but equal to that of the rotation o7.

Proof: As commuting symmetric operators, p and ¢ are simultaneously diagonalizable. Since rotations
through 180° are completely determined by their axes, the axis of p must be a non-axis eigenvector of o,
hence orthogonal to the axis of o. Ditto for p and 7.

The axis of p is thus reversed by both o and 7, hence left fixed by their product. (Incidentally, the angle
of the rotation o7 equals twice the angle between the axes of o and 7.)

THEOREM 2: If G < SOj3 has signature (iii), its action on Syl,(G) defines an isomorphism of G with As.

Proof: Since the signature shows no orbits of cardinality 15/k, there are no elements of order 4. Hence
every H € Syl,(G) counsists of the identity and three “turns”, i.e., elements of order 2. Another look at the
signature shows that G contains exactly 15 such turns, each sharing its axis with no other element of G.

Let (p,o) and (p,7) be non-trivially intersecting members of Syl,(G). Since p shares its axis with no
other element of G, Lemma 2 forces o7 € G to equal p, whence (p,o) = (p, 7). The 15 turns of G therefore
make up 5 Sylow 2-groups Hi, Ho, H3, Hy, Hs.

As in the proof of Theorem 1, we now consider the normalizers K; of these groups. They cannot be
cyclic or dihedral, since the signature shows no orbits of cardinality 10/k — as it would if G had elements
of order 6. Hence, by Lemma 1 and Theorem 1, each K is isomorphic to A4 and contains the Klein 4-group
H; as its unique minimal non-trivial normal subgroup. By Exercise 2, the G-action on Syl,(G) defines an
injection G — Ss; by Exercise 3, its image is As.

Finite subgroups of GL3(R)).

PROPOSITION: Every finite subgroup G < SL3(R) which is neither cyclic nor dihedral must be isomorphic
to Ay, Sy, or As.

Proof: Let a be the sum of all u”p as u ranges over G (here p” denotes the transpose of the matrix ).
Then it is easy to see that « is symmetric and positive definite, hence has a square root § with the same
properties. Moreover, pu” oy = o for all 4 € G. Since 37 = 3 and % = a, it follows for all u € G that

BuB T Bus™) = 'paps ™ =B e =1,
i.e., that SuB~! is orthogonal. In other words, G is conjugate in GL3(R) to a finite group of rotations.

Ezercise 4: Let T < GL3(R) be the subgroup consisting of £1. Show that every finite subgroup H < GL3(R)
is contained in SL3(R) x T. Conclude that H is either equal to G x T or isomorphic to G, where G is a
suitable subgroup of SL3(R). (Hint: Restricted to H, the projection SL3(R) x T — SL3(R) is either
injective or has kernel T'.)

Regular polyhedra.

Ezercise 5: Remember the set P C S of poles. We know P = Ty U T, U T5, with |T;| = n;. For each of
the cases in (1), show that the points of T3 are the vertices of a regular no-hedron with f3 triangular faces
around each vertex.

We shall do this exercise in Case (iii), leaving the two easier cases for the reader. Pick a pair v, v1 €
T3 with minimal angular distance §(v,v1) > 0. Since |G,| = f3 = 5, the G,-orbit of vy consists of 5
“neighbours” {v1,...,v5} of v. All these points lie in the “northern” hemisphere, whose pole is v, because
d(v,v1) < d(v1,v2) < 72°. A similar system of 6 points populates the southern hemisphere — and that
accounts for all 12 elements of T3.

Around v we have 5 “triangles” A; = (v,v;,v;11), with ¢ € F5, and around every pv € T3, with p € G,
a congruent system pA;. To see that A is equilateral, note that the great circles joining v to v; and v;4;
make an angle of 72° at v. This must also happen at vy, with respect to its neighbours, one of which is v.
In particular, the two neighbours of v9 adjacent to v must lie in the northern hemisphere, and hence can be
none other than v; and vs. Therefore d(v,v1) = §(v,v2) = §(v1, v2).
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