
Math 322, Fall 1993, Supplementary Exercises.

Matrix groups and fields.

1. GL2(F2) consists of the following matrices with entries in F2: 1 1

1 0

  0 1

1 1

  1 0

1 1

  1 0

0 1

  1 1

0 1

  0 1

1 0

 .

Consider the following set of matrices in GL2(F ), for (i) F = R and (ii) F = F11: a −b

b a

  a b

−b a

  1 0

0 1

  b a

a −b

 −b a

a b

  0 1

1 0

 ,

where (i) a = −1/2, b =
√

3/2 in F = R, and (ii) a = 5 and b = 8 in F = F11.

For any field F , the set of “permutation matrices” in GL3(F ) comprises 0 0 1
1 0 0
0 1 0

  0 1 0
0 0 1
1 0 0

  1 0 0
0 1 0
0 0 1

  0 1 0
1 0 0
0 0 1

  0 1 0
1 0 0
0 0 1

  0 0 1
0 1 0
1 0 0

 .

CHECK: Each of the four sets of matrices is a group. In each of them, one can find elements A and B, such
that the other elements are A2, AB, BA, and I. The “generators” A and B satisfy the conditions:

A3 = I, B2 = I, BA = A2B .

The next exercise will show that these rules completely determine the multiplication table of each group.
Hence the four groups of matrices described above are mutually isomorphic.

2. Let G be a group consisting of exactly six elements e, s, s2, t, st, s2t, with e neutral, and satisfying the
rules

s3 = e, t2 = e, ts = s−1t .

Write out the multiplication table for G.

3. In GL2(F2), the set of matrices {0, I, A,A2} is closed under addition, and forms a field. Let us call it F4.
There are exactly two isomorphism between F×4 and the additive group of F3.

4. In GL2(F3), find a matrix J such that J2 = −I. The subset {aI + bJ |a, b ∈ F3} is closed under addition
and forms a field. Let us call it F9. Find an element of order 8 in F×9 .

5. Let F be a field, and consider matrices

A =

 a b

c d

 and B =

 0 1

1 0


with entries in F . If b+ c = 0, show that BA = A−1B. If, moreover, detA = −trA = 1, show that A3 = I.
Exhibit a subgroup of GL2(F13) isomorphic to the the group G of Exercise 1.

6. In GL2(F2), find a matrix A such that A2 = A+ I. Show that the set of matrices {0, I, A,A2} is closed
under addition and forms a field (let us call it F4). Show that there are exactly two isomorphism between
F×4 and the additive group of F3.
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7. In GL2(F3), find a matrix J such that J2 = −I. Show that the subset {aI+ bJ |a, b ∈ F3} is closed under
addition and forms a field (let us call it F9). Find an element of order 8 in F×9 .

8. Let E = K[τ ] be a quadratic field extension with τ2 = t ∈ K. Consider an element α ∈ E with α 6∈ K,
say α = a+ bτ . Further, let f(X) be a cubic polynomial with coefficients in K.

(i) Show that α2 + uα+ v = 0 for suitable u, v ∈ K.
(ii) Show that f(α) 6= 0, unless f(c) = 0 for some c ∈ K.

Linear Algebra and Geometry.

1. Let U and V be subspaces of a linear space W over some field K. Prove:

dim
(
U + V

)
= dimU + dimV − dim

(
U ∩ V

)
.

2. Let A be an m×n matrix over a field K. In the following, C, N , R refer to column-, null-, and row-space,
respectively.

(i) Show that dim C(A) = n− dimN (A).
(ii) Show that dim C(A) = dimR(A).

3. Let K be a field with finitely many elemnts, (F,+) be the cyclic subgroup generated by 1 in the additive
group (K,+), and {α1, · · · , αm} be a minimal set of genrators of (K,+).

(i) Show that the set F is closed under multiplication and forms a field.
(ii) Show that {α1, · · · , αm} is a basis of K as linear space over F .

(iii) Conclude that the number of elements in K is a prime power.

4. Let A be a real n× n matrix, V ⊆ Rn a subspace, and V⊥ the orthocomplement of V in Rn (i.e., the set
of vectors ⊥ to V).

(i) Show that A = AT if and only if AX • Y = X •AY for any pair X,Y ∈ Rn.
(ii) Show: AV ⊆ V implies AV⊥ ⊆ V⊥.

(iii) How does this relate the Corollary of §6 to the Spectral Theorem ?

5. A real symmetric n× n matrix A is called positive definite if AX •X > 0 for all X ∈ Rn.
(i) Show that A is positive definite if and only if all its eigenvalues are positive.
(ii) If A is a positive definite matrix, show that there another such matrix B such that B2 = A.

6. Let G be a finite subgroup of GLn(R).
(i) Find a positive definite matrix A such that MTAM = A for all M ∈ G.

(Hint: Try sums
∑
NTN for N ∈ G.)

(ii) Show that G is similar to a subgroup of O(n), that is: find an invertible B such that BMB−1 is
orthogonal for all M ∈ G.

7. Show: If the real symmetric n×n matrices A and B commute, they have an orthogonal set V1, . . . , Vn of
common eigenvectors.

( Hint: (A−λI)V = 0 implies (A−λI)BV = 0, so B defines a symmetric tranformation on N (A−λI)
and hence has an eigenvector there.)

8. For any column V ∈ R3 with |V | = 1, consider the symmetric matrix SV = 2V V T − I.
(i) Evaluating SV V , as well as SV X for X ∈ V ⊥, deduce that SV is a rotation. What axis, what

angle ?
(ii) Given two unit-columns V and W , show that V ⊥ ∩W⊥ is an eigenspace for R = SV SW . What is

the eigenvalue? What kind of transformation is R ?
(iii) If V •W = cos θ, find the angle between W and RW . Under what condition is SV SW = SU for

suitable U ?
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Math 322, Midterm Test, Nov.1, 1993.

1. Show that G = SL2(F3) is a group of order 24 having only one element of order 2. Deduce that G is not
isomorphic to S4.

GL2(F3) has 48 elements, since there are 32−1 = 8 (resp. 32−3 = 6) choices for the first (resp. second)
column of an invertible matrix. SL2(F3) has 48/2 = 24, as it is the kernel of the surjective homomorphism
det : GL2(F3) −→ F×3 , with |F×3 | = 2.

For A ∈ SL2(F ) with tr (A) = t, Cayley-Hamilton reads: tA = A2 +I. If A2 = I, this becomes tA = 2I,
whence t 6= 0 and A = (2/t)I — provided only that 1 + 1 6= 0 in F . For F = F3, this means A = ±1.

By contrast, S4 has nine elements of order 2, six of type (ab) and three of type (ab)(cd).

2. Let N be a normal subgroup of the finite group G, and suppose that |N | is relatively prime to |G : N |.
Prove that N is the only subgroup of order |N |.

Let H ≤ G be a subgroup of order |N |, and consider its image K under the canonical homomorphism
ψ : G −→ G/N . Since K is a subgroup of G/N , Lagrange says that |K| divides |G : N |. Since K is a
homomorphic image (hence quotient group) of H, its order must also divide |H| = |N |. By the stipulated
relative primeness, we conclude that |K| = 1. Therefore K = 1, which means H ≤ kerψ = N , whence
H = N because of the equality of orders.

3. Show that A7 has a subgroup isomorphic to S5, but no subgroup isomorphic to Z10.

Let τ ∈ S7 denote the transposition (67), and consider the map T : S5 −→ S7 given by T (σ) = στ j(σ),
where j(σ) is taken from the “sign” ε(σ) = (−1)j(σ). T is a homomorphism because j(σ1σ2) ≡ j(σ1) + j(σ2)
mod 2, and because τ commutes with all σ ∈ S5, whence T (σ1σ2) = σ1σ2τ

j(σ1)+j(σ2) = σ1τ
j(σ1) · σ2τ

j(σ2).
Moreover, στ j(σ) = (1) ⇐⇒ σ = τ j(σ) = (1) , and T is injective. Finally, T (σ) ∈ A7 always, since
ε(στ j(σ)) = ε(σ)(−1) j(σ) = 1.

Any π ∈ S7 of order 10 would have to be the (disjoint) product of a 5-cycle with a single 2-cycle, since
there is no room for more than one of each. Hence ε(π) = −1, and π 6∈ A7.

4. In GL2(F5), find a matrix J such that J2 = 2I. Show that the set E = {aI + bJ |a, b ∈ F5} of matrices
over F5 forms a field of 25 elements.

For J , take any matrix of trace 0 and determinant−2 (lots of choice). In E we have the following formulas
for addition and multiplication: (aI + bJ) + (a′I + b′J) = (a+ a′)I + (b+ b′)J and (aI + bJ) · (a′I + b′J) =
(aa′+2bb′)I+(ab′+a′b)J . Hence E is closed under both of these operations. Associativity and distributivity
are inherited from the world of matrices, commutativity of multiplication is clear from the formula.

To see the existence of multiplicative inverses, note that (aI+ bJ)(a− bJ) = (a2− 2b2)I. Hence aI+ bJ
fails to be invertible only if a2 − 2b2 = 0 in F5. This is impossible for b 6= 0, or else (a/b)2 = 2 would
contradict the fact that 1 and 4 are the only squares mod 5. Hence a2−2b2 = 0 happens only if aI+ bJ = 0.
All other elements of E are invertible, and E is a field. It has as many elements as there are pairs (a, b),
since I and J are independent.

5. For every integer a ∈ Z, prove that a5 ≡ a modulo 5, a11 ≡ a modulo 11, and a21 ≡ a modulo 55.

By the “Little Fermat”, bp−1 = 1 in Fp for any b 6= 0. Hence bm = b for every b ∈ Fp (including b = 0),
whenever m = 1 + k(p− 1) with k ∈ Z. In other words, am ≡ a modulo p, for every a ∈ Z, whenever m ≡ 1
mod (p− 1).

Now if m satisfies this condition for two different primes p and q (e.g. m = 21, p = 5, q = 11), it follows
that (am − a) is divisible by both p and q, for every a ∈ Z.

(Incidentally, for a “public key code”, we need an m with a nifty factorization m = sr, to scramble
with s and restore with r. Here is one way to get it: writing (p − 1)(q − 1) = abd with (a, b) = 1, put
m = (ax+ by)(au+ bv) with xu ≡ a−2 mod b and yv ≡ b−2 mod a. Then m ≡ 1 mod ab, hence mod p-1 as
well as mod q-1.)
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THE UNIVERSITY OF BRITISH COLUMBIA

Sessional Examinations – December 1993

MATH 322 (Algebra I) Time: 2 1
2 hours

Part A. Five Questions = 75 Points.
Each of these counts for 15% of your grade.

1. Let K be an abelian group (written additively) with generators x, y, z and relations

10y + 5z = 5x+ 10z = 10x+ 5y = 0.

a) Show that H = 5K is cyclic of order 9. (Note: H has generators u = 5x, v = 5y, w = 5z.)
b) How many elements of order 5 are there in K? Justify your answer.

2. Consider a finite subgroup G < GLn(R), where n is odd, and put G0 = G ∩ SLn(R).
a) Show that detα = ±1 for all α ∈ G; using this, define a homomorphism ψ : G −→ SLn(R) whose

kernel has order ≤ 2.
b) Show that either G = ±G0 or G is isomorphic to a subgroup of SLn(R).

3. Let G be a group of order 12 with more than 2 elements of order 3.
a) How many subgroups of order 4 does G have? Justify your answer.
b) Show that G has no subgroup of order 6.

4. Let F be a field of p elements, where p is an odd prime.
a) Show: if a ∈ F× is a square, then a(p−1)/2 = 1.
b) Suppose that (p− 1)/2 is odd. Show: the set of matrices of the form a −b

b a

 = a

 1 0

0 1

+ b

 0 −1

1 0

 ,
with a, b ∈ F not both zero, constitutes a group.

5. Let G denote S4 or the octahedral group (take your pick).
a) Show that the Sylow 2-groups of G are dihedral.
b) How many are there, and what is their intersection? Justify your answer.

Part B. A Short Essay = 25 Points.
This should fit into one loosely typed page, but length is not essential.

6. Sketch some of the arguments used in the proof of ONE of the following 3 theorems. You may
outline the whole proof or dwell on some salient aspect(s): the object of this exercise is to show your
understanding of a larger context.

(i) Every finite subgroup of GLn(R) is similar (i. e., conjugate) to a subgroup of O(n).

(ii) Every finite abelian group is isomorphic to a direct product of cyclic groups.

(iii) For every finite group G and every prime p dividing |G|, the set Sylp(G) has cardinality 1 + pk (for
suitable k ∈ Z), and G acts on it transitively by conjugation.
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