The case Fermat did for sure: n=4.

Recall the parametrization of Pythagorean Triples: if x, y, and z are relatively prime integers, then (after maybe switching x and y)

$$x^{2} + y^{2} = z^{2} \iff x = a^{2} - b^{2}, \quad y = 2ab, \qquad z = a^{2} + b^{2}$$
 (1)

for suitable integers a and b, which are again relatively prime. Note that x and z are odd while y is even. We shall prove:

If x, y, z is a Pythagorean Triple, no number of the form $2^{\mu}xy$ can be a square.

Clearly we may take x, y relatively prime. Then $2^{\mu}xy$ not being a square is equivalent to x and $2^{\mu}y$ not being squares. Of course, μ counts only modulo 2. From $\mu = 0$ we get FLT4: in a Pythorean Triple, x and y cannot both be squares. From $\mu = -1$, we see that there is no right triangle with integer sides and a square area.

Proof. If $x = w^2$ is itself a square, we can rewrite $x = a^2 - b^2$ as $w^2 + b^2 = a^2$, and repeat the same magic — with w odd and hence b even — to get

$$a = u^2 + v^2$$
, and $b = 2uv$. (2)

If now $2^{\mu}y = 2^{\mu+1}ab$ were also a square, there would be integers c and d such that

$$a = c^2$$
 and $2^{\mu+1}b = d^2$. (3)

Now, $d^2 = 2^{\mu+2}uv$ shows that $2^{\mu}uv$ is a square as well, and we have

$$c^2 = u^2 + v^2$$

with c smaller than z. By induction (here called "descent"), the proof is finished.

Another interpretation of the case $\mu=-1$ is that the elliptic curve given by $\eta^2=\xi^3-\xi$ has no rational points. Indeed, with fractions in lowest terms, a rational square equal to $a^3/b^3-a/b=(a^3-ab^2)/b^3$ is necessarily of the form n^2/m^6 with $a^3-ab^2=n^2$ and $b=m^2$. Therefore $(a^2-b^2)\cdot ab=n^2m^2$, in other words: xy/2 is a square.