EUCLID WITHOUT HURWITZ.

Let $\mathcal{Z} \subset \mathcal{Q}$ denote the quaternions with integral and rational coefficients, respectively, and consider the element $\rho \in \mathcal{Q}$ defined by $2\rho = 1 + i + j + k$. The vertices of the unit cube W with center 0 are precisely the points $u\rho$ and $u\bar{\rho}$, where u denotes any of the 8 units ± 1 , $\pm i$, $\pm j$, $\pm k$ of the ring \mathcal{Z} . As $\rho\bar{\rho} = \rho + \bar{\rho} = 1$, it is clear that $\rho^3 = -1$. The ring $\mathcal{H} = \mathcal{Z}[\rho]$ consists of all $\lambda \in \mathcal{Q}$ such that $\lambda + \bar{\lambda}$ and $\lambda\bar{\lambda}$ are integers. Sometimes called the ring of Hurwitz quaternions, \mathcal{H} forms the customary arithmetic arena within \mathcal{Q} . Our aim is to show that Euclid's algorithm also works quite well in \mathcal{Z} itself.

Obviously every $\mu \in \mathcal{Q}$ is of the form $z + \varepsilon$, where $z \in \mathcal{Z}$ and $\varepsilon \in W$, so that $|\varepsilon| \leq 1$ with equality iff ε is a vertex of W. Given non-zero elements $n, m \in \mathcal{Z}$, we apply this to $\mu = nm^{-1}$ and get

$$n = zm + r , \qquad z, r \in \mathcal{Z}, \qquad |r| \le |m|, \tag{*}$$

with equality iff $r = \varepsilon m$, where ε is a vertex of W. To find a criterion for the occurrence of equality, consider the ring homomorphism $s : \mathcal{Z} \longrightarrow \mathbb{F}_2$ given by

$$s: a+bi+cj+dk \longmapsto a+b+c+d \pmod{2}$$
.

Note that the quaternions over \mathbb{F}_2 form the group algebra \mathbb{F}_2V of the Klein four-group V, and s is just the augmentation map.

Lemma: Let ε be a vertex of W, and $m \in \mathcal{Z}$. Then $\varepsilon m \in \mathcal{Z}$ if and only if s(m) = 0, in which case $\alpha m \in \mathcal{Z}$ and $s(\alpha m) = 0$ for all vertices α of W.

Proof: Consider the element $e = 2\varepsilon$ in \mathcal{Z} . Obviously $\varepsilon m \in \mathcal{Z}$ if and only if $em \in 2\mathcal{Z}$, i.e., $em = 0 \in \mathbb{F}_2V$. However, in \mathbb{F}_2V every 2α looks like 1 + i + j + k, and em = s(m)e.

Theorem: If \mathcal{L} is a non-principal left ideal of \mathcal{Z} , then $s(\mathcal{L}) = 0$ and \mathcal{L} has two generators g, ρg or three generators g, ρg , $\bar{\rho} g$.

Proof: Let $m \in \mathcal{L}$ have minimal positive norm. Applying (*) to any $n \in \mathcal{L}$, we might always find r = 0, and then \mathcal{L} is principal. Otherwise we obtain $n = zm + \varepsilon m$ at some point. By the lemma, it then follows that s(m) = 0 and that $\alpha m \in \mathcal{Z}$ for all vertices α of W. Clearly \mathcal{L} is generated by m and a non-empty subset of the αm , and therefore $s(\mathcal{L}) = 0$. Finally, since every vertex of W can be written as $u\rho$ or $u\bar{\rho}$ with $u \in \mathcal{Z}^{\times}$, the theorem follows.

Remark: Obviously every \mathcal{L} becomes principal in \mathcal{H} . In trying to express an odd natural prime p as a sum of four squares, one applies the Euclidean algorithm to the ideal $\mathcal{L} = \mathcal{Z}p + \mathcal{Z}m$, where $m\bar{m} \equiv 0 \pmod{p}$. Since $s(p) \neq 0$ in \mathbb{F}_2 , this ideal is always principal.