The Doughnut Problem.

Given z = xy - x - y, the identity

$$ax - by = 1 \tag{1}$$

quite formally entails

$$z+1=(a-1)x+(x-b-1)y$$
 and $z-1=(y-a-1)x+(b-1)y$. (2)

This observation can be used to prove the following theorem.

Theorem. If x and y are relatively prime integers greater than 1, then z is the greatest integer which is not of the form

$$mx + ny$$
 with $m \ge 0$, $n \ge 0$. (3)

Proof. The set of pairs (a, b) of integers satisfying (1) is a double arithmetic series $(a_k, b_k) = (a_0 - ky, b_0 - kx)$ with k running through all integers, and (x_0, y_0) representing some fixed initial pair. The smallness of the right hand side of (1) guarantees that a and b are always of the same sign.

Let us choose $a = a_0$ to be minimal positive. Then

$$a_{-1} = a - y < 0 < a = a_0$$
 and $b_{-1} = b - x < 0 < b = b_0$, (4)

showing that b is minimal positive as well. More importantly, both y-a and x-b are positive, and hence all the bracketted coefficients in (2) are non-negative. Thus both z-1 and z+1 have the form (3).

But z itself does not have this form. If it did, we could subtract it from the first part of (2) and obtain

$$1 = (a - 1 - m) x + (\cdots) y,$$

whence m+1 = ky for suitable k > 0. Now k = 1 is impossible: it would make m = y-1 and ny = z - mx = -y. On the other hand, m = ky - 1 with k > 1 would make m > y and mx + ny > yx > z.

It remains to show that every w > z does have the form (3) — which is true for w = z + 1 by the first equation of (2). The rest follows by induction: w = mx + ny with $m, n \ge 0$ implies w + 1 =

$$(m+a)x + (n-b)y = (m+a-y)x + (n-b+x)y, (5)$$

with the bracketted quantities non-negative in at least one of these forms. In fact, if both $n \leq b-1$ and $m \leq y-a-1$, the second equation in (2) would make $w \leq z-1$. Therefore, if the left hand side of (5) is in trouble because b < n, the right hand side can take over with $m \geq y-a$, and hence $m+a-y \geq 0$. The other coefficient n+x-b is automatically non-negative by (4). \square