Fibonacci Type Decimal Expansions.

1. Rappels. It was noted long ago, and Tony Gardiner reminded Mathed of it last year, that the decimal expansion of 1/89 = 0.011235955056179775280898876404494... followed the Fibonnacci Sequence, if it is read as 0.0112358 + 0.00000013 + 0.000000021 + 0.0000000034 + ...

To see how that comes about, consider formal power series $f(X) = \sum_{k=0}^{\infty} a_k X^k$ such that $a_k = a_{k-1} + a_{k-2}$ for all k > 2. This recursion relation easily implies the equation

$$f(X)(1 - X - X^{2}) = a_{1}X + (a_{2} - a_{1})X^{2}$$

whence $f(1/z) = (a_1z + a_2 - a_1)/z^2 - z - 1$. The reason for specialising X to z^{-1} is to prepare for numerical expansions in terms of 10^{-1} .

Thus, with z=10, putting $a_1=0$ and $a_2=1$ yields Tony's formula for 1/89. But there is no need to start at the beginning: taking $a_1=5$ and $a_2=8$ reveals that 53/89=0.5955056179775280898876404494382... This is just a final segment of the expansion for 1/89, but since the latter is periodic, it is also a *shift* — by 5 places (count them!), i.e. multiplication by 10^5 , whence $10^5=53$ modulo 89. ...

Of course, there is also no need to stick with the classical Fibonacci sequence. Why not try the Lucas sequence $(a_1 = 1, a_2 = 3)$? It yields 12/89 — nothing essentially new.

2. Variations. To get something really different, we follow our friend Fred Harwood, and "parse" the decimals two, three, or more places at a time, by setting $z=100,1000,\ldots$ Fred discovered this while computing $1/19=0.052631578947368421\ldots$ whose period has length 18. Its structure can be more clearly recognised when it is written as $0.05263157+88\times10^{-10}+145\times10^{-12}+233\times10^{-14}+378\times10^{-16}+611\times10^{-18}+1600\times10^{-20}\ldots$

Defining $d(n) = 100^n - 10^n - 1$, we get d(2) = 9899, d(3) = 998999, etc. The prime factorisations of these numbers are:

$$d(2) = 19 \times 521$$

$$d(3) = 179 \times 5581$$

$$d(4) = 29 \times 3447931$$

$$d(5) = 178439 \times 56041$$

and so on — something to experiment with. Are there always just 2 factors? Wherever the relation $a_k = a_{k-1} + a_{k-2}$ comes up, so necessarily does $z^2 = z + 1$ and therefore the Golden Ratios and $\sqrt{5}$, their sum. By quadratic reciprocity, a prime for which 5 is a quadratic residue must be congruent ± 1 modulo 5, i.e. have 1 or 9 as the last digit. But couldn't we have 3 nines, for instance?