The PIMS Postdoctoral Fellow Seminar: Antoine Leudière
Event Recap
A recording of this event is available on mathtube.org.
Topic
Castles of numbers, and a bit of rethinking
Speakers
Details
In number theory, we often consider a generalization of integers called algebraic numbers. Their definition is rather elementary, but their classification is nothing but. Algebraic numbers come in families, and we can attach each family an invariant measuring its size: the castle. Kronecker proved that an algebraic integer with castle strictly less than one is zero, and that an algebraic integer with castle exactly one is a root of unity. The classification of algebraic numbers with castle less than a prescribed constant is technical, but we managed to derive it for cyclotomic integers (a subclass of algebraic numbers) with castle less than 5.01, solving a conjecture of R. M. Robinson opened in 1965.
I will state our result, and rather than focus on the technical details, present the methodology that lead us to it. Indeed, this collaboration was initiated at the Rethinking Number Theory workshop: members from various career stages work in groups under the guidance of a project leader. The workshop organizers make it so that participants work with joy, autonomy and open-mindness. This allowed each of us to contribute to what we were best at. Joint work with J. Bajpai, S. Das, K. S. Kedlaya, N. H. Le, M. Lee and J. Mello; https://arxiv.org/abs/2510.20435.