Pacific Dynamics Seminar: Ping Ngai (Brian) Chung
Topic
Stationary measure and orbit closure classification for random walks on surfaces
Speakers
Details
We study the problem of classifying stationary measures and orbit closures for non-abelian action on surfaces. Using a result of Brown and Rodriguez Hertz, we show that under a certain average growth condition, the orbit closures are either finite or dense. Moreover, every infinite orbit equidistributes on the surface. This is analogous to the results of Benoist-Quint and Eskin-Lindenstrauss in the homogeneous setting, and the result of Eskin-Mirzakhani in the setting of moduli spaces of translation surfaces.
We then consider the problem of verifying this growth condition in concrete settings. In particular, we apply the theorem to two settings, namely discrete perturbations of the standard map and the \Out(F_2)-action on a certain character variety. We verify the growth condition analytically in the former setting, and verify numerically in the latter setting.
Additional Information
Ping Ngai (Brian) Chung, The University of Chicago.
This is a Past Event
Event Type
Scientific, Seminar
Date
July 8, 2020
Time
-
Location