UBC Number Theory Seminar: Elchin Hasanalizade
Event Recap
A recording of this event is available on mathtube.org.
Topic
On some explicit results for the sum of unitary divisor function
Speakers
Details
Let $\sigma^*(n)$ be the sum of all unitary (i.e. coprime) divisors of $n$. As an analogue of Lehmer’s totient problem, Subbarao proposed the following conjecture. The congruence $\sigma^*(n)\equiv 1\pmod{n}$ is possible iff $n$ is a prime power. This problem is still open. We strengthen considerably the lower estimations for the potential counterexamples to Subbarao’s conjecture.
In the second part of our talk, we discuss the growth of the function $\sigma^*(n)$. We establish a new explicit upper bound, namely $\sigma^*(n)<1.2678n\log\log{n}$ for all $n\ge223092870$. For this purpose, we use explicit estimates for Chebyshev’s $\theta$-function and for some product defined over prime numbers.